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LETTER TO THE EDITOR 

Quantum oscillations of point contact conductance in a 
short -contact -constriction case 

A Matulis and D Segida 
Semiconductor Physics Institute, Academy of Sciences of the Lithuanian SSR, 232600, 
Poielos 52, Vilnius, USSR 

Received 27 January 1989 

Abstract. The results of a conductance calculation for the case of an extremely short contact 
constriction in a two-dimensional electron gas are presented. An exact solution of the 
problem is obtained by making use of the slit diffraction results. Although the plot of the 
conductance as a function of the constriction width shows no quantised steps (this is in 
contrast to the case for a long contact constriction), the quantum conductance oscillations 
are well defined. 

In recent experiments (van Wees et a1 1988, Wharam et a1 1988) on ballistic transport 
through a constriction in the two-dimensional electron gas of a GaAs-AlGaAs 
heterojunction, the quantised conductance of point contacts has been discovered. The 
conductance changes in quantised steps of e2/nh when the constriction width, controlled 
by a gate on top of the heterojunction, is varied. The explanation of the observed 
phenomena is based on the assumption of quantisationof the electron transverse momen- 
tum in the contact constriction. This leads to the Landauer (1957) formula for con- 
ductance corresponding to ballistic transport with no channel mixing, every channel 
making a partial step-like contribution to the total conductance. In principle, this 
requires the constriction length L to be much greater than its width d. In general, the 
conductance behaviour must depend on the ratio L/d. 

With the aim of investigating this dependence more fully in this Letter we report 
the results of the conductance calculation in the case of an extremely short contact 
constriction ( L  d) .  In this case the point contact is simply a slit in the dielectric 
partition as shown in figure 1, and the calculation of the conductance reduces to the two- 
dimensional slit diffraction problem. 

The point contact conductance can be calculated by making use of the assumption 
that the potential Vchanges only in the vicinity of the slit, and the electrons have a Fermi 
distribution in each of the half-planes, with the Fermi energies eF differing by eV. Then, 
taking Pauli's principle into account, the electron current from the left-hand half-plane 
to the right-hand one may be written as 
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Figure 1. The point-contact layout. 
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Figure 2. The point-contact conductance as a 
function of kFd. A, B, C :  g,(r = 1,2,3); D: g(k ,d) ;  
E: geometrical optics approximation g = k ,d /n;  
F: the second derivative of g. 

The second factor is included to take into account the spin degeneracy. The electron 
eigenfunction Yk satisfies the Schrodinger equation 

(V2 + k*)Y,(X, 2) = 0 (2)  
with the boundary condition 

and the requirement that the asymptotic behaviour in the left-hand half-plane must 
correspond to the incident electronic plane wave. 

Making use of the following asymptotic expression for the eigenfunction: 

Yk(x, 2) Z’-x + exp[ik(x cos CY + z sin CY)] (4) 

(CY being the angle between the wavevector k and the Ox axis), changing the sum over k 
in expression (1) to an integral, and taking into account the fact that eV 4 E~ we get the 
following final expression for the conductance: 

G = J/V = (e2/6n)g ( 5 )  
where 

It is convenient to solve equations (2) and (3) in elliptical coordinates (p ,  6): 

x = ( d / 2 )  cosh p COS 6 

z = (d /2)  sinh p sin 6. 
(7) 

(8) 
We shall use the scheme presented in Morse and Feshbach (1953), and construct the 
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eigenfunction in the following way. In the left-hand half-plane (n < 6 < 2n) the function 
vk includes the incident wave (4), reflected wave (it has the form (4) with a changed to 
-a) and the wave emitted by the slit. In the right-hand half-plane (0 < 6 < n) there is 
only the wave emitted by the slit. Hence, the eigenfunction vk can be written as 

Here we have used the notation ser(6,  q )  for the Mathieu function and M s ? ( p ,  q )  for 
the modified Mathieu function of the ith kind, as in the Handbook of Mathematical 
Functions (1965), and q = ( /~,d)~/16 (kF is the wavevector of an electron on the Fermi 
surface). 

Matching the functions (9) and their first derivatives in the slit ( p  = 0) we get for the 
coefficients 

- A ,  = B ,  = M@)(O, q)/2~;53)(0, 4). (10) 

Now inserting (9) and (10) into (6) and performing the integration we obtain the following 
final expression for the conductance: 

a: 

are known as bond factors for the Mathieu functions and are tabulated in Tables Relating 
to Mathieu Functions (1951). 

The conductance calculated from expressions (11) and (12) is shown in figure 2. At 
the foot of the figure the partial contributions of the no-mixing channels g r ,  Y = 1, 2 ,3 ,  
are plotted as a function of kFd.  Every partial contribution is seen to have a typical step- 
like shape: it has a threshold at small values of kFd and saturates when kFd+ W .  The 
threshold at which the partial electron wave begins to penetrate the slit shifts to larger 
kFd as the number r increases. The sum of these partial contributions gives the resulting 
conductance (curve D) which, with increasing kFd becomes the same as the result 
obtained from the geometrical optics approximation g = k F d / n  (curve E) .  The 
thresholds of the g, are seen to be too smeared for the resulting plot of the conductance 
to have steps. Nevertheless, oscillations are clearly seen. It should be noted that the 
bends in the curve in the conductance plot (we obtained them within an accuracy of 
from the zeros of the second derivative shown at the top of figure 2) correspond exactly 
to the quantised conductance plateau values (g = 1, 2, 3) found in the long-contact- 
constriction case ( L  % d ) .  

In summary, we have shown that even in an unfavourable case of an extremely short 
contact constriction (t << d )  some quantum conductance features, namely quantum 
conductance oscillations, manifest themselves. 
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